
Cryptographic protocol analysis for
students and engineers

Nadim Kobeissi

Symbolic Software, NYU Paris

NGI Forum, Helsinki, September 25, 2019

Verifpal

What is Formal Verification?

• Using software tools in order to obtain guarantees on the security of

cryptographic components.

• Protocols have unintended behaviors when confronted with an active

attacker: formal verification can prove security under certain active attacker

scenarios!

• Primitives can act in unexpected ways given certain inputs: formal

verification: formal verification can prove functional correctness of

implementations!

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
1

Formal Verification Today

Protocols: ProVerif, Tamarin

• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first

message to Bob?”

• Are limited to the “symbolic model”,

CryptoVerif works in the

“computational model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem

prover.

• Can produce provably functionally

correct software implementations of

primitives (e.g. Curve25519 in

HACL*).

• Can produce provably functionally

correct protocol implementations

(Signal*).

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
2

Symbolic Verification is Wonderful

• Many papers published in the past 4 years: symbolic verification proving

(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G

and much more!

• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

Why isn’t it used more?

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
3

Tamarin and ProVerif: Examples

rule Get_pk:
[!Pk(A, pk)]
-->
[Out(pk)]

// Protocol
rule Init_1:

[Fr(~ekI), !Ltk($I, ltkI)]
-->
[Init_1($I, $R, ~ekI)

, Out(<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI
}ltkI>)]

rule Init_2:
let Y = 'g' ^ z // think of this as a group element check

in
[Init_1($I, $R, ~ekI)
, !Pk($R, pk(ltkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)
]

--[SessionKey($I,$R, Y ^ ~ekI)
, ExpR(z)
]->
[InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,

hs:handshakestate, payload:bitstring, sid:sessionid) =
let (ss:symmetricstate, s:keypair, e:keypair, rs:key,

re:key, psk:key, initiator:bool) =
handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring)

= (empty, empty, empty) in
let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in
let ss = mixKey(ss, getpublickey(e)) in

let ss = mixKey(ss, dh(e, rs)) in
let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||

((event(LeakS(phase0, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phase0, bob))) &&
(event(LeakPsk(phase0, alice, bob))));

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
4

ProVerif

Tamarin

(also not

fully

automated)

Verifpal: A New
Symbolic Verifier

1. An intuitive language for modeling
protocols (scientific contribution: a new

method for reasoning about protocols in the

symbolic model.)

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. Integration with developer
workflow.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
5

What Are Verifpal’s
End Goals?

• High quality, robust protocol
modeling and analysis for
engineers, with integration and
live prototyping inside Visual
Studio Code.

• High quality educational materials
for protocol analysis in
undergraduate classes.

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi 6

A New Approach to Symbolic Verification

…without losing strength

• Can reason about advanced protocols

(eg. Signal, Noise) out of the box.

• Can analyze for forward secrecy, key

compromise impersonation and other

advanced queries.

• Unbounded sessions, fresh values, and

other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling

protocols.

• Modeling that avoids user error.

• Analysis output that’s easy to

understand.

• Integration with developer workflow.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
7

Verifpal Language

• Explicit principals with discrete internal

states (Alice, Bob, Client, Server…)

• Reads like a protocol diagram.

• You don’t need to know the language to

understand it!

• Knows for private and public values.

• Generates for private fresh values.

• Assignments.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
8

Verifpal Language

• Explicit principals with discrete internal

states (Alice, Bob, Client, Server…)

• Reads like a protocol diagram.

• You don’t need to know the language to

understand it!

• Constants are immutable.

• Global namespace.

• Constant cannot reference other constants.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
9

Verifpal Language: Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
10

Verifpal Language: Simple and Intuitive

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
11

Passive Attacker

• Can observe values as they cross the
network.

• Cannot modify values or inject own
values.

• Protocol execution happens once.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
12

Active Attacker

• Can inject own values, substitute
values, etc.

• Unbounded protocol executions.

• Keeps learned values between
sessions (except if constructed from
fresh values.)

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
13

Signal in Verifpal: State Initialization

• Alice wants to initiate a chat with Bob.

• Bob’s signed pre-key and one-time pre-

key are modeled.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
14

Signal in Verifpal: Key Exchange

• Alice receives Bob’s key information

and derives the master secret.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
15

Signal in Verifpal: Messaging

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
16

Signal in Verifpal: Queries and Results

• Typical confidential and authentication

queries for messages sent between Alice

and Bob.

• All queries pass! No contradictions!

• Not surprising: Signal is correctly

modeled, long-term public keys are

guarded; signature verification is

checked.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
17

Protocols Analyzed with Verifpal

• Signal secure messaging protocol.

• Scuttlebutt decentralized protocol.

• ProtonMail encrypted email service.

• Telegram secure messaging protocol.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
18

Verifpal in the Classroom

• Verifpal User Manual: easiest way to

learn how to model and analyze protocols

on the planet.

• NYU test run: huge success. 20-year-old

American undergraduates with no

background whatsoever in security

were modeling protocols in the first two

weeks of class and understanding security

goals/analysis results.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
19

Verifpal in the Classroom

• Upcoming Eurocrypt 2020 affiliated

event:

https://verifpal.com/eurocrypt2020/ –

Verifpal tutorial!

• Verifpal has a place in your

undergraduate classroom and will do a

better job teaching students about

protocols and models than anything else

in the world.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
20

https://verifpal.com/eurocrypt2020/

Verifpal’s Role in
the NGI Vision

• Provide engineers, developers and
students with the accessibility they
need for the analysis of critical
cryptographic systems and
designs.

• Broaden access to the latest
research into better understanding
the security of cryptographic
systems in software.

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi 21

Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:

verifpal.com

Support Verifpal development:

verifpal.com/donate

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi 22

