Verifpal

Cryptographic protocol analysis for
students and engineers

OOOOOOOOOO

Nadim Kobeissi
Symbolic Software, NYU Paris
NGI Forum, Helsinki, September 25, 2019

What 1s Formal Verification?

* Using software tools 1n order to obtain guarantees on the security of
cryptographic components.

* Protocols have unintended behaviors when confronted with an active
attacker: formal verification can prove security under certain active attacker
scenarios!

* Primitives can act in unexpected ways given certain inputs: formal
verification: formal verification can prove functional correctness of
implementations!

Formal Verification Today

Code and Implementations: F* Protocols: ProVerif, Tamarin

* Exports type checks to the Z3 theorem * Take models of protocols (Signal, TLS)
prover. and find contradictions to queries.

* Can produce provably functionally * “Can the attacker decrypt Alice’s first
correct software implementations of message to Bob?”
primitives (e.g. Curve25519 in + Are limited to the “symbolic model”,
HACL%*).

CryptoVerif works in the
* Can produce provably functionally “computational model”.
correct protocol implementations
(Signal™).

Verifpal: Cryptographic protocol analysis for students and
engineers — Nadim Kobeissi

Symbolic Veritication 1s Wondertul

* Many papers published 1n the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!

* This 1s a great way to work, allowing practitioners to reason better about
their protocols before/as they are implemented.

Why isn’t it used more?

Tamarin and ProVerif: Examples

rule Get pk:
[!'Pk(A, pk)]
-->

[Out(pk)]

Tamarin

// Protocol (also not
rule Init 1: amgﬂ;ﬁ)
[Fr(~ekI), 'Ltk($I, 1tkI)]
-->
[Init 1($I, $R, ~ekI)
, Out(<$I, $R, 'g' ~ ~ekI, sign{'1', $I, $R,'g' " ~ekI
}LtkI>)]

rule Init 2:
let Y = 'g" ©~ z // think of this as a group element check
in
[Init 1($I, $R, ~ekI)
IPk($R, pk(ltkR))
In(<$R, $I, Y, sign{'2', $R, $I, Y }LtkR>)

ExpR(z)
->

]
--[SessionKey($I,$R, Y ~ ~ekI)
]
[InitiatorKey($I,$R, Y ™ ~ekI) 1]

letfun writeMessage a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) =
handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring)
= (empty, empty, empty) in

let e = generate keypair(key e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in

let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in

let s = generate keypair(key s(me)) in

[.]

event(RecvMsg(bob, alice, stagepack c(sid b), m)) ==>
(event(SendMsg(alice, c, stagepack c(sid a), m))) ||
((event(LeakS(phaseO, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phaseO, bob))) &&

(event (LeakPsk(phase@, alice, bob))));

Verifpal: Cryptographic protocol analysis for students and
engineers — Nadim Kobeissi

Veritpal: A New
Symbolic Verifier

1. An intuitive language for modeling

pr 0tocolS (scientific contribution: a new
method for reasoning about protocols in the
symbolic model.)

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. Integration with developer
worktlow.

Verifpal: Cryptographic protocol analysis for students and
engineers — Nadim Kobeissi

What Are Verifpal’s
End Goals?

* High quality, robust protocol
modeling and analysis for
engineers, with integration and
live prototyping inside Visual
Studio Code.

* High quality educational materials
for protocol analysis in
undergraduate classes.

Verifpal: Cryptographic protocol analysis for students and engineers — Nadim Kobeissi

A New Approach to Symbolic Verification

User-focused approach... ...without losing strength

* An intuitive language for modeling * Can reason about advanced protocols
protocols. (eg. Signal, Noise) out of the box.

* Modeling that avoids user error. * Can analyze for forward secrecy, key

compromise impersonation and other

* Analysis output that’s easy to ,
advanced queries.

understand.
 Unbounded sessions, fresh values, and

* Integration with developer workflow. ,
other cool symbolic model features.

Verifpal: Cryptographic protocol analysis for students and
engineers — Nadim Kobeissi

Verifpal Language

* Explicit principals with discrete internal
states (Alice, Bob, Client, Server...)

* Reads like a protocol diagram.

* You don’t need to know the language to
understand it!

* Knows for private and public values.
* Generates for private fresh values.

* Assignments.

New Principal: Alice

principal Alicel
knows public c0, cl
knows private ml
generates a

New Principal: Bob

principal Bob[
knows public c0, cl
knows private m2
generates b
gb = G™b

Verifpal Language

* Explicit principals with discrete internal
states (Alice, Bob, Client, Server...)

* Reads like a protocol diagram.

* You don’t need to know the language to
understand it!

e (Constants are immutable.

* Global namespace.
 Constant cannot reference other constants.

New Principal: Alice

principal Alicel
knows public c0, cl
knows private ml
generates a

New Principal: Bob

principal Bob[
knows public c0, cl
knows private m2
generates b
gb = G™b

Verifpal Language: Primitives

* Unlike ProVerif, primitives are built-in.

* Users cannot define their own
primitives.

* Bug, not a feature: eliminate user error

on the primitive level.

* Verifpal not targeting users interested in
their own primitives (use ProVerif, it’s
great!)

Verifpal: Cryptographic protocol analysis for students and

ENC(key, plaintext): ciphertext. Symmetric encryption, similar for example
to AES-CBC or to ChaCha20.

DEC (key, ENC(key, plaintext)): plaintext. Symmetric decryption.

AEAD_ENC (key, plaintext, ad): ciphertext. Authenticated encryption with
associated data. ad represents an additional payload that is not encrypted, but that
must be provided exactly in the decryption function for authenticated decryption to
succeed. Similar for example to AES-GCM or to ChaCha20-Poly1305.

AEAD_DEC (key, AEAD_ENC(key, plaintext, ad), ad): plaintext. Authenticated
decryption with associated data. See §3.4.4 below for information on how to validate
successfully authenticated decryption.

10

engineers — Nadim Kobeissi

Veritpal Language: Simple and Intuitive

Simple Protocol

attacker[active]
principal Bob[] Alice Bob
principal Alicel |

generates a generates a

A ga = G"a

ga = G™a
] ga -
Alice -> Bob: ga

knows private ml

principal Bob|
generates b

knows private ml gb = G b
generates b el = AEAD_ENC(ga”b, ml, gb)
gb = G™b gb, el
el = AEAD_ENC(ga™b, ml, gb) <
] el dec = AEAD DEC(gb™a, el, gb)?
Bob -> Alice: gb, el |
principal Alicel Alice Bob

el dec = AEAD_DEC(gb™a, el, gb)?

Passive Attacker

* Can observe values as they cross the
network.

* Cannot modify values or inject own
values.

* Protocol execution happens once.

Verifpal: Cryptographic protocol analysis for students and
engineers — Nadim Kobeissi

12

Active Attacker

* Can inject own values, substitute
values, etc.

* Unbounded protocol executions.

* Keeps learned values between
sessions (except if constructed from
fresh values.)

\

\
£]
Verifpal: Cryptographic protocol analysis for students/a/nd n |/

13
engineers.— Nadim Kobeissi

Signal in Verifpal: State Initialization

e Alice wants to initiate a chat with Bob.

* Bob’s signed pre-key and one-time pre-
key are modeled.

Signal: Initializing Alice and Bob as Principals

attacker[active]

principal Alicel
knows public c0, cl, c2, c3, c4
knows private alongterm
galongterm = G"alongterm

]

principal Bob[
knows public c0, cl, c2, c3, c4
knows private blongterm, bs
generates bo
gblongterm = G"blongterm
gbs = G"bs
gbo = G"bo
gbssig = SIGN(blongterm, gbs)

Signal in Verifpal: Key Exchange

* Alice receives Bob’s key information
and derives the master secret.

Signal: Alice Initiates Session with Bob

Bob -> Alice: [gblongterm], gbssig, gbs, gbo
principal Alice|
generates ael
gael = G™ael
amaster = HASH(cO, gbs™alongterm, gblongterm™ael, gbs™ael, gbo™ael)
arkbal, ackbal = HKDF(amaster, cl, c2)

Verifpal: Cryptographic protocol analysis for students and

. . - 15
engineers — Nadim Kobeissi

Signal in Verifpal: Messaging

Signal: Alice Encrypts Message 1 to Bob

principal Alicel

5 Signal: Bob Decrypts Alice’s Message 1
generates ml, ae

gae2 = G"ae2 principal Bob[

valid = SIGNVERIF(gblongterm, gbs, gbssig)? bksharedl = gae2”bs

aksharedl = gbs™ae2 brkabl, bckabl = HKDF(bksharedl, brkbal, c2)

arkabl, ackabl = HKDF(aksharedl, arkbal, c2) bkencl, bkenc2 = HKDF(HMAC(bckabl, c3), cl, c4)

akencl, akenc2 = HKDF(HMAC(ackabl, c3), cl, c4) ml d = AEAD_DEC(bkencl, el, HASH(galongterm, gblongterm, gae2))
el = AEAD_ENC(akencl, ml, HASH(galongterm, gblongterm, gae2))]

]
Alice -> Bob: [galongterm], gael, gae2, el

Verifpal: Cryptographic protocol analysis for students and

. . - 16
engineers — Nadim Kobeissi

Signal in Verifpal: Queries and Results

* Typical confidential and authentication
queries for messages sent between Alice

Signal: Confidentiality and Authentication Queries

and Bob.
queries|
 All queries pass! No contradictions! O o aebs a1
. . . confidentiality? m2
* Not surprising: Signal is correctly authentication? Bob -> Alice: €2

confidentiality? m3

modeled, long-term public keys are)

guarded; signature verification is
checked.

Signal: 1Initial Analysis Results

Verifpal! verification completed at 12:36:53

Protocols Analyzed wit

Signal secure messaging protocol.
Scuttlebutt decentralized protocol.

ProtonMail encrypted email service.

Telegram secure messaging protocol.

Verifpal: Cryptographic protocol analysis for students and

Verifpal

® @® i fish /Users/nadim/Documents/git/verifpal

! HKDF(HMAC(bckba2, c3), c1, c4) now conceivable by reconstructing with HMAC(bckba2, c3), c1
, c4
Deduction! m2 found by attacker by deconstructing AEAD_ENC(bkenc3, m2, HASH(gblongterm, galongterm, g
be)) Ulth HKDF(HMAC(bckbaZ, c3)s , c4) (de

! bkenc3 found by attacker by reconstructing with HMAC(bckba2, c3), c1, c4 (de
1! brkab1 found by attacker by equivocating with HKDF(bkshared1, brkbal, c2) (
! brkba2 found by attacker by equivocating with HKDF(bkshared2, brkab1, c2)
1! bkshared1 found by attacker by reconstructing with ghattacker_0 (de
! bkshared2 found by attacker by reconstructlng with ghattacker_0 (de
on! bkshared1 resolves to gae2’bs (d
| galongtermAbs found by attacker hy equ1v0cat1ng with bkshared1 (depth
n! gaelAbs found by attacker by equivocating with bkshared1 (
! bkshared?2 resolves to gae2”be (
on! m2 is obtained by the attacker as m2
n! e2, sent by Attacker and not by Bob and resolving to AEAD_ENC(bkenc3, m2, HASH(gblongterm,
galongterm, ghe)), is used in primitive AEAD_DEC(akenc3, e2, HASH(ghlongterm, galongterm, ghe)) in A
lice's state
Result! confidentiality? m1: m1 is obtained by the attacker as m1
Result! authentication? Alice -> Bob: el: e1, sent by Attacker and not by Alice and resolving to A
EAD_ENC(akenc1, m1, HASH(galongterm, ghlongterm, gae2)), is used in primitive AEAD_DEC(bkenc1, e1, HA
SH(galongterm, ghlongterm, gae2)) in Bob's state
Result! confidentiality? m3: m3 is obtained by the attacker as m3
Result! authentication? Alice -> Bob: e3: e3, sent by Attacker and not by Alice and resolving to A
EAD_ENC(akenc5, m3, HASH(ghlongterm, galongterm, gae3)), is used in primitive AEAD_DEC(bkenc5, e3, HA
SH(gblongterm, galongterm, gae3)) in Bobh's state
Result! confidentiality? m2: m2 is obtained by the attacker as m2
Result! authentication? Bob -> Alice: e2: e2, sent by Attacker and not by Bob and resolving to AEA
D_ENC(bkenc3, m2, HASH(ghlongterm, galongterm, ghe)), is used in primitive AEAD_DEC(akenc3, e2, HASH(
ghlongterm, galongterm, ghe)) in Alice's state
! verification completed at 21:27:01
REMINDER Verifpal is experimental software and may miss attacks.-
:~/D/g/verifpal G:
sl

18

engineers — Nadim Kobeissi

Verifpal 1n the Classroom

* Verifpal User Manual: easiest way to
learn how to model and analyze protocols

on the planet.

* NYU test run: huge success. 20-year-old
American undergraduates with no
background whatsoever in security
were modeling protocols in the first two
weeks of class and understanding security

goals/analysis results.

18 Verifpal User Manual

Guarding the Right Constants

Verifpal allows you to guard constants
fication by the active attacker. However, g
principal’s public keys, for example, might not reflect real-
e keys are rarely guarded from
being modified as they cross the network

What interesting new insights will you discover using
o e guarded constants?

In the second message from the above example, we see that, gb is surrounded
by brackets ([1). This makes it a “guarded” constant, meaning that while an
active attacker can still read it, they cannot tamper with it. In that sense it is

“guarded” against the active attacker. |

2.7 QUERIES

A Verifpal model is always concluded with a queries block, which contains
essentially the questions that we will ask Verifpal to answer for us as a result
of the model’s analysis. Queries have an important role to play in a Verifpal
model’s constitution. The Verifpal language makes them very simple to
describe, but you may benefit from learning more on how to properly use
them in your models. For more information on queries, see §3. §2.8 below
shows a quick example of how to illustrate queries in your model.

2.8 A SIMPLE COMPLETE EXAMPLE

Figure 2.1 provides a full model of a naive protocol where Alice and Bob only

ever exchange unauthenticated public keys (6*a and 6"b). Bob then proceeds

to send an encrypted message to Alice using the derived Diffie-Hellman |
shared secret o encrypt the message. We then want to ask Verifpal three

questions:

We call this a Mayor-in-the-Middle attack

S B Ty
YEARS EARLIER... "BL
SOMETHING'
NO, NOT RIGHT,
VERIFPAL.

A COMPROMISED
EPHEMERAL KEY

CAN STILL MEAN

TROLIBLE.

BUT.
PROVERIF-SAM:
THE LONG-TERM
KEYS HAVE MUTUA
AUTHENTICATION/

CHAPTER 2. THE VERIFPAL LANGUAGE 17

Example Equations

principal Server(
generates x
generates y
9x = 6°x

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal,
all equations must have the constant G as their root generator. This mirrors
Diffie-Hellman behavior. Furthermore, all equations can only have two
constants (a”b), but as we can see above, equations can be built on top of
other equations (as in the case of gxy and gyx).

2.6 MESSAGES

Sending messages over the network is simple. Only constants may be sent
within messages:

Example: Messages

Alice -> Bob: ga, el
Bob -> Alice: [gb], e2

Let’s look at the two messages above. In the first, Alice is the sender and Bob
is the recipient. Notice how Alice is sending Bob her long-term public key
ga = G"a. An active attacker could intercept ga and replace it with a value
that they control. But what if we want to model our protocol such that Alice
has pre-authenticated® Bob’s public key gb = 6*b? This is where guarded
constants become useful.

2“Pre-authentication” refers to Alice confirming the value of Bob’s public key before
the protocol session begins. This helps avoid having an active attacker trick Alice to use a
fake public key for Bob. This fake public key could instead be the attacker’s own public key

Verifpal: Cryptographic protocol analysis for students and

engineers — Nadim Kobeissi

19

Verifpal 1n the Classroom

event:

https://veritpal.com/eurocrypt2020/ —

18

Verifpal User Manual

pr

Guarding the Right Constants

Verifpal allows you to guard constants against modi-

fication by the active attacker. However, guarding all of a

cipal’s public keys, for example, might not reflect real-

€ keys are rarely guarded from

being modified as they cross the network

‘What interesting new insights will you discover using

o e guarded constants?

In the second message from the above example, we see that, gb is surrounded
by brackets ([1). This makes it a “guarded” constant, meaning that while an
active attacker can still read it, they cannot tamper with it. In that sense it is
“guarded” against the active attacker.

* Upcoming Eurocrypt 2020 affiliated

A Verifpal model is always concluded with a queries block, which contains
essentially the questions that we will ask Verifpal to answer for us as a result
of the model’s analysis. Queries have an important role to play in a Verifpal
model’s constitution. The Verifpal language makes them very simple to
describe, but you may benefit from learning more on how to properly use
them in your models. For more information on queries, see §3. §2.8 below
shows a quick example of how to illustrate queries in your model.

Verifpal tutorial!

* Verifpal has a place in your ‘ﬁi’
undergraduate classroom and will do a
better job teaching students about
protocols and models than anything else

in the world.

to send an encrypted m

AEBN

2.8 A SIMPLE COMPLETE EXAMPLE

Figure 2.1 provides a full model of a naive protocol where Alice and Bob only
ever exchange unauthentis

ted public keys (6% and G*b). Bob then proceeds
sage to Alice using the derived Diffie-Hellman
ask Verifpal three

) International Association

for Cryptologic Research ”
o, RS

A COMPROMISED
EPHEMERAL KEY
CAN STILL MEAN
TROLIBLE.

BUT.
PROVERIF-SAM:
THE LONE-TE!

KEYS HAVE M
AUTHENTI

SAFELY ENCRYPTED...

.
CHAPTER 2. THE VERIFPAL LANGUAGE 17

Example Equations

principal Server(
generates x
generates y
9x = 6°x

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal,
all equations must have the constant G as their root generator. This mirrors
Diffie-Hellman behavior. Furthermore, all equations can only have two
constants (a”b), but as we can see above, equations can be built on top of
other equations (as in the case of gxy and gyx).

2.6 MESSAGES

Sending messages over the network is simple. Only constants may be sent
within messages:

Example: Messages

Alice -> Bob: ga, el
Bob -> Alice: [gb], e2

Let’s look at the two messages above. In the first, Alice is the sender and Bob
is the recipient. Notice how Alice is sending Bob her long-term public key
ga = G"a. An active attacker could intercept ga and replace it with a value
that they control. But what if we want to model our protocol such that Alice
has pre-authenticated? Bob’s public key gb = 6*b? This is where guarded
constants become useful.

2 “Pre-authentication” refers to Alice c ing the value of Bob’s public key before
the protocol session begins. This helps avoid having an active attacker trick Alice to use a
fake public key for Bob. This fake public key could instead be the attacker’s own public key

B

Verifpal: Cryptographic protocol analysis for students and
engineers — Nadim Kobeissi

20

https://verifpal.com/eurocrypt2020/

Verifpal’s Role 1n
the NGI Vision

* Provide engineers, developers and
students with the accessibility they
need for the analysis of critical
cryptographic systems and
designs.

* Broaden access to the latest
research into better understanding
the security of cryptographic
systems 1n software.

Verifpal: Cryptographic protocol analysis for students and engineers — Nadim Kobeissi

Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:
verifpal.com

Support Verifpal development:

verifpal.com/donate d =

| Protocol Builder's N
" Warkbench

Verifpal: Cryptographic protocol analysis for students and engineers — Nadim Kobeissi 22

